Study of the diurnal cycle of stressed vegetation for the improvement of fluorescence remote sensing
نویسندگان
چکیده
Chlorophyll fluorescence (Chf) emission allows estimating the photosynthetic activity of vegetation -a key parameter for the carbon cycle modelsin a quite direct way. However, measuring Chf is difficult because it represents a small fraction of the radiance to be measured by the sensor. This paper analyzes the relationship between the solar induced Chf emission and the photosynthetically active radiation (PAR) in plants under water stress condition. The solar induced fluorescence emission is measured at leaf level by means of three different methodologies. Firstly, an active modulated light fluorometer gives the relative fluorescence yield. Secondly, a quantitative measurement of the Chf signal is derived from the leaf radiance by using the Fraunhofer LineDiscriminator (FLD) principle, which allows the measurement of Chf in the atmospheric absorption bands. Finally, the actual radiance spectrum of the leaf fluorescence emission is measured by a field spectroradiometer using a device that filters out the incident light in the Chf emission spectral range. The diurnal cycle of fluorescence emission has been measured for both healthy and stressed plants in natural and simulated conditions. The main achievements of this work have been: (1) successful radiometric spectral measurement of the solar induced fluorescence; (2) identification of fluorescence behavior under stress conditions; and (3) establishing a relationship between full spectral measurements with the signal provided by the FLD method. These results suggest the best time of the day to maximize signal levels while identifying vegetation stress status.
منابع مشابه
Spatio-temporal analysis of diurnal air temperature parameterization in Weather Stations over Iran
Diurnal air temperature modeling is a beneficial experimental and mathematical approach which can be used in many fields related to Geosciences. The modeling and spatio-temporal analysis of air Diurnal Temperature Cycle (DTC) was conducted using data obtained from 105 synoptic stations in Iran during the years 2013-2014 for the first time; the key variable for controlling the cosine term i...
متن کاملRemote sensing technology for mapping and monitoring vegetation cover (Case study: Semirom-Isfahan, Iran)
To determine the suitable indices for vegetation cover and production assessment based on the remote sensing data, simultaneous digital data with field data belonging to the spring rangeland of the Semirom-Isfahan province were analyzed. During two years of monitoring the annual, grass, forb, and shrub vegetation cover and the total production data from 86 were collected. The Global Positioning...
متن کاملRemote sensing technology for mapping and monitoring vegetation cover (Case study: Semirom-Isfahan, Iran)
To determine the suitable indices for vegetation cover and production assessment based on the remote sensing data, simultaneous digital data with field data belonging to the spring rangeland of the Semirom-Isfahan province were analyzed. During two years of monitoring the annual, grass, forb, and shrub vegetation cover and the total production data from 86 were collected. The Global Positioning...
متن کاملIdentification of Invasive Species Using Remote Sensing and Vegetation Indices, (Case Study: Vazroud Rangelands, Iran)
Biological invasions form a major threat to the provision of ecosystems productsand services and can affect ecosystems across a wide spectrum of bioclimatic conditions.Therefore, it is important to systematically monitor the spread of species over broad regions. Ithas long been recognized that remote sensing and geographical information system couldcontribute to this capacity. This paper aims t...
متن کاملDiurnal Cycle Relationships between Passive Fluorescence, PRI and NPQ of Vegetation in a Controlled Stress Experiment
In order to estimate vegetation photosynthesis from remote sensing observations; some critical parameters need to be quantified. From all absorbed light; the plant needs to release any excess that is not used for photosynthesis; by non-photochemical quenching; by fluorescence emission and unregulated thermal dissipation. Non-photochemical quenching (NPQ) processes are controlled photoprotective...
متن کامل